منابع مشابه
A Model of Heat Conduction
In this paper, we first define a deterministic particle model for heat conduction. It consists of a chain of N identical subsystems, each of which contains a scatterer and with particles moving among these scatterers. Based on this model, we then derive heuristically, in the limit of N → ∞ and decreasing scattering cross-section, a Boltzmann equation for this limiting system. This derivation is...
متن کاملInverse Estimation of Boundary Heat Flux for Heat Conduction Model
Mathematical model of direct and inverse problems is developed for the flat plate probe which is subjected to timedependent heat flux at one end, while the other end is kept insulated. The direct solution, which is concerned with determination of the temperature distribution in the probe, is developed using an approach based on the method of variation of parameters. The direct solution is used ...
متن کاملComment on "model for heat conduction in nanofluids".
In a recent Letter, Kumar et al. [1] introduced a model for heat conduction in nanofluids (liquid suspensions of nanosized particles) that was capable of describing experimental results on thermal conductivity of nanofluids. The model was built in two steps. In the first step, a static problem (immobile particles) was considered in which the total heat flux was a sum of heat conduction by the l...
متن کاملModeling Diffusion to Thermal Wave Heat Propagation by Using Fractional Heat Conduction Constitutive Model
Based on the recently introduced fractional Taylor’s formula, a fractional heat conduction constitutive equation is formulated by expanding the single-phase lag model using the fractional Taylor’s formula. Combining with the energy balance equation, the derived fractional heat conduction equation has been shown to be capable of modeling diffusion-to-Thermal wave behavior of heat propagation by ...
متن کاملModel for heat conduction in nanofluids.
A comprehensive model has been proposed to account for the large enhancement of thermal conductivity in nanofluids and its strong temperature dependence, which the classical Maxwellian theory has been unable to explain. The dependence of thermal conductivity on particle size, concentration, and temperature has been taken care of simultaneously in our treatment. While the geometrical effect of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applicationes Mathematicae
سال: 2001
ISSN: 1233-7234,1730-6280
DOI: 10.4064/am28-3-8